A nonlinear constituent based viscoelastic model for articular cartilage and analysis of tissue remodeling due to altered glycosaminoglycan-collagen interactions.
نویسندگان
چکیده
A constituent based nonlinear viscoelastic (VE) model was modified from a previous study (Vena, et al., 2006, "A Constituent-Based Model for the Nonlinear Viscoelastic Behavior of Ligaments," J. Biomech. Eng., 128, pp. 449-457) to incorporate a glycosaminoglycan (GAG)-collagen (COL) stress balance using compressible elastic stress constitutive equations specific to articular cartilage (AC). For uniaxial loading of a mixture of quasilinear VE constituents, time constant and relaxation ratio equations are derived to highlight how a mixture of constituents with distinct quasilinear VE properties is one mechanism that produces a nonlinear VE tissue. Uniaxial tension experiments were performed with newborn bovine AC specimens before and after approximately 55% and approximately 85% GAG depletion treatment with guanidine. Experimental tissue VE parameters were calculated directly from stress relaxation data, while intrinsic COL VE parameters were calculated by curve fitting the data with the nonlinear VE model with intrinsic GAG viscoelasticity neglected. Select tissue and intrinsic COL VE parameters were significantly different from control and experimental groups and correlated with GAG content, suggesting that GAG-COL interactions exist to modulate tissue and COL mechanical properties. Comparison of the results from this and other studies that subjected more mature AC tissue to GAG depletion treatment suggests that the GAGs interact with the COL network in a manner that may be beneficial for rapid volumetric expansion during developmental growth while protecting cells from excessive matrix strains. Furthermore, the underlying GAG-COL interactions appear to diminish as the tissue matures, indicating a distinctive remodeling response during developmental growth.
منابع مشابه
Comparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro
Objective(s): Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE) has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose d...
متن کاملMatrix deposition modulates the viscoelastic shear properties of hydrogel-based cartilage grafts.
Hydrogel-based scaffolds such as alginate have been extensively investigated for cartilage tissue engineering, largely due to their biocompatibility, ambient gelling conditions, and the ability to support chondrocyte phenotype. While it is well established that the viscoelastic response of articular cartilage is essential for articulation and load bearing, the time-dependent mechanical properti...
متن کاملMesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کاملCostal Versus Articular Chondrocytes in Alginate Three-Dimensional Cultures
Given the difficulties in accessing articular cartilage as a source of chondrocytes to be used in fabricating cartilage constructs, alternative sources are required. The present study examined chondrocytes from costal cartilage for their suitability in cartilage tissue engineering. Chondrocytes isolated from rat knee and rib hyaline cartilage were separately mixed with alginate and placed in a ...
متن کاملPrediction of collagen orientation in articular cartilage by a collagen remodeling algorithm.
OBJECTIVE Tissue engineering is a promising method to treat damaged cartilage. So far it has not been possible to create tissue-engineered cartilage with an appropriate structural organization. It is envisaged that cartilage tissue engineering will significantly benefit from knowledge of how the collagen fiber orientation is directed by mechanical conditions. The goal of the present study is to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanical engineering
دوره 131 10 شماره
صفحات -
تاریخ انتشار 2009